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Pairing interaction and its q-deformed versions 

S S~Avancini and D-P Menezes 
Depto de Ffsica, CFM, Univemidade Federal de Santa Cataim Caixa Postal 476, 
CEP 88040-900. Fiorian6polis SC,  brazil^ 

Received 1 June 1993 

Abstract We investigate the behaviour of +e pairingmodel within the context of quMtum 
algebras. The pairing Hamiltonian is diagonalized exactly for different values of the deformation 
parameter q in systems with 8 and 50 particles. The same Hamiltonian is salved with the help 
of the coherent state variational method. We find thal the variational method gives reliable 
results when compared with the exact ones. We also discuss the differences tetween the two 
deformation procedures. 

1. Introduction 

Recently, the study of q-deformed models has received much attention in the literature. 
Investigations are made either from the mathematical point of view [l] , or conceming 
possible applications to physical systems [Z]. The final aim of these works consists of 
finding a physical meaning to the deformation procedure and, in this way, showing the 
range of validity and applicability of these models in physics. 

Some~toy models have already been investigated within the context of quantum algebras. 
Examples of such studies are the effects of the deformation parameter on the phase 
transition from the vibrational to the rotational regime in the su(2) Lipkin model [3], in 
the su(2) @su(2) Moszkowski model [4] and in two.superconductivity models, namely the 
~ s u ( 2 )  @'su(Z) Hubbard and the su(2) Thouless model [5]. For a fixed number of particles 
in systems described by the models above, it was shown that the phase transition may occur 
more rapidly, i.e. for weaker interaction strength or even be suppressed, depending on the 
deformation taken. 

In this paper, we consider the pairing interaction in order to gain a better understanding 
of the effects of the deformation procedure. The variational method is used to calculate 
the ground-state levels in systems with different numbers of particles and the results are 
compared with the ones obtained from the exact calculation. One of the reasons for 
performing the variational calculation in the pairing model is to establish its validity in 
systems which are more complicated that the one considered in [3], where the method was 
introduced, and hence justify its applications in systems where the exact calculations are 
too difficult or even impossible. Even when the exact calculation is possible, the utilization 
of the variational method can be very useful, since, it allows a more natural understanding 
of critical behaviour in pseudo-spin systems [6]: 

Quantum deformation is first introduced in a way we refer to as naive and the 
calculations are repeated. We find that the variational method gives reasonably~good results 
when compired with the exact ones. It is also a better approximation for systems with 
larger numbers of particles. The phase transition of the model is analysed for different 
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values of the deformation parameter. It is worth noting that there has been great ambiguity 
in the procedures used for deforming physical systems because there are various different 
way?. to proceed and all of them go back to the same original system when q --+ 1. 
To get rid of this problem, we could demand, as a deformation mle, that all underlying 
symmetries in the original system be maintained in the deformed system for the quantum 
algebra [7]. Following the rule we have just suggested, we finally study a second way of 
introducing deformation and compare the results obtained with the ones we find with the 
naive deformation. 

S S Avancini and D P Menezes 

2. The pairing models 

The pairing model [SI consists of two N-fold degenerate levels, whose energy difference is 
E. The lower level has energy 4 2  and its single-parricle states are usually labelled j lmt 
and the upper level has energy ~ / 2  and its single-particle states are labelled jzm2. The 
pairing Hamiltonian reads 

where ajfi = (-l)j-"'aj+, . In what follows, the number of particles (which are fermions), 
N ,  will be even and 2 j = N 12. 

Introducing the quasi-spin su(2) generators 

where 

IS+, s-] = 2s, 

[L+, L-] = 2L, 

[LilS'l=O 

IS,. S,l = hS* 

[L,, L*] = k L *  (3) 

one sees that the pairing interaction has m underlying 4 2 )  Bsu(2) algebra. With the help 
of (2), equation ( I )  can be rewritten as 

H = E(L. - S,) - G(L+ + S+)(L- + S-). (4) 

However, the condition S, + L, = 0 fixes the number of particles [8]. and then we obtain 

(5) 
GCff 2L,- -(L+L_+S+S-+ L+S-+S+L-) 

H 
E N 
- =  



~ . ~ ~ .  
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where G.a = N G / E .  The above Hamiltonian is the one we diagonalize exactly ana also 
utilize to find the ground-state energy of the system through the variational method. The 
basis of states in which (5) is diagonalized is IS = $ N L , ,  L = $ N  - Lz). 

Deformation can be introduced straightforwardly by deforming the su(Z)@su(2) algebra. 
The generators of the su,(2) algebra obey the following commutation relations 

where 

q is the deformation parameter such that when q -+ 1, [XI = x. In our case, J can be 
either L or S. The matrix elements of the deformed su,(Z) operators in a Ijm) deformed 
basis are easily obtained from 

In this way, one can obtain the eigenvalues of the deformed Hamiltonian for any desired 
value of the deformation parameter. In this work we are mainly concerned with the ground 
state and first excited levels. For diagonalizing the deformed Hamiltonian exactly, we use 
the definition G.E = [ N ] G / E  [9]. 

3. The coherent state variational method 

In this section we discuss the variational method used to obtain the ground-state energy 
where the trial state is given by the su&) coherent state [lo]. For this purpose we need 
the su,(2) operators in the Bargmann space DO] 

.where I@) is an arbitrary state and 

is the 9-derivative and 

Lq-lf(Z) = f (q - ' z ) .  

When 9 + 1, the usual formulae are recovered. Finally, we need to calculate 
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where 2 j  = N / 2  and the q-exponential is given by 

and lz) is a state belonging to the su&) @ su&) space. Notice that the L operators act 
on the subspace spanned by the 121) states and the S operators act on the subspace spanned 
by the lzz) states. 

To obtain EO in (12) from (5) we start with 

where 

the normalization of the coherent state [z) is 

where 

and a similar equation is used for (z2ln). Notice that the q-binomial is given by 

where 

tml! K] = [m - k]![k]!' 

From (9). we calculate 

and 
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Notice that (zlS+S-Iz)/(zlz) can be read off from (21) by exchanging the indices 1 with 2 
and (zlS+L-lz)/(zlz)  can be read off from (22) by the same exchange. At this point, we 
can write 

For further convenience, we parametrize the complex numbers z I  ind z2 as follows 

zI = tan $eei+ z2 = tan ;e‘e’+’ (24) 

where e,@’ E [O.xl and qj,qj’ E [0,21r] and use the fact that L ,  + S, = 0. Fmm this 
constraint we have 

After parametrizing the above equation, it becomes 
. .  . . ., ~ . .  . . .  ,~ , .  

~. . _  , , 

1 ND-I 

. ,  . . ,  . sinZ $6 C cosz Le Np-1-21; + sin2 ;e 
. .  k=O 2 9  

Notice that the above equation shows that 8‘ is. a dependent function of 6’. Satisfying this 
constraint and minimizing H /E to obtain EO (which becomes a function of just one variable), 
we finally obtain 

Eo N - = - - + 2 sin2 ;e B(e)  
E 2 
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where 
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and ~ ( 6 ‘ ) .  d(8’) and e@’) are obtained from c(0). d(0) and e(@, respectively, by exchanging 
0 with 8’. 

For the state of minimum energy 

which implies that cos(@I - &) = 1. In our calculation we have always taken G,a > 0. 

4. Symmetric deformed pairing interaction 

As already stated in the introduction, there is a certain degree of ambiguity in the way a 
physical system can be deformed. In the previous section, we have discussed the deformation 
of the pairing model in a way that seems to be the most natural one. This is the reason 
we call it the naive deformation procedure. However, the deformed Hamiltonian does not 
preserve any symmetries of the original Hamiltonian. In this original Hamiltonian, given 
in (5). the terms which represent a one-body interaction (6(LI - S,)) have an underlying 
su(2j1+ 1) @su(2jz+ 1) symmetry. Notice that S, commutes with all su(2jl+ 1) operators 
which are 

t hi (Iilmiaj,mr 

and 

(30) 

similar to the ones used by Roratos [I21 that the naive deformation procedure does not 

t 
Eij = ajlm,ajtml 

where i # j. The same statement is valid for L,. One can show [ I l l  with arguments 
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produce one-body terms with an suq(2jl + l)@suq(2j2+ 1) symmetry, which would be the 
quantumdeformed counterpan of the original system. In analogy to Floratos’ deformation 
technique, there is a special recipe to deform certain Hamiltonians in such a way that they 
keep their original symmetry. Following his recipe, we can write 

€ H = -  (sinh(2yLZ + yN/2) + sinh(2yL - yN/2)) 2 2sinh y /2  

E sinh(2yLz) cosh(yN/2) 
2 2 sinh y/2 

- _  - 

for the interaction strength G e  = 0 and where q = ey. Notice that the above Hamiltonian 
bears an underlying $ 4 2 )  @suq(2) symmehy. The Hamiltonian we diagonalize exactly is 
the one given above plus the interaction term written in (5). 

At this point we have to calculate (211 sinh2yLz1zl)/(zllzl) which we do as follows 

2(211sinh2yL,lzl) = q z L z ( z l I z l )  - q-zLr(zlIzl) 

= q - 2 j q 2 t d / d z ,  [1(+)21~1]2j - 4 4  2 j  -2Zxd/d:;, [1(+)2,211”. 132) 

q “ ’ d / d * f ( z )  = f (q“2)  (33) 

Here we need to use the following propeny 

where 

n=o 

Equation (32) can be rewritten as 

With the help of (18). we obtain 

and 
[1(+)9-~~i]~j  - (1 + q - ’ j - I z i )  

[i(+)zi]Zj (1 + q z j - l z z )  ‘ 

Substituting the above expressions properly in (34), it becomes 

- 
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5. Results and conclusion 

To start with, we have checked the effect of thc quantum deformation on the pairing model. 
For this purpose we have performed an exact calculation to obtain the eigenenergies for 
systems with 8 and 50 particles. With these results we have observed the thermodynamic 
phase transition undergone by both systems. In figures 1 and 2 we have plotted (E, - EO)/€ 
as a function of the interaction strength Gfi  for different values of q, in order to study the 
phase transition. It is easily observed that the phase transition is gradually suppressed with 
increasing q for a fixed number of particles. The same is true if q is kept fixed and the 

S S Avancini and D P hfenezes 

number of particles is increased. 

2.80 
I 3.00 , 

Figure 1. ( E ,  - Eo)/E as a function of  the interaction 
strength G.8 obtained fmm the exact diagonalization 
of (5) for eight particles. The full cuwe is drawn for 
9 = 1.0. the broken curve for 9 = 1.2 and the long 
broken curve for 9 = 1.5. 

Figure 2. The same as in figure 1, but for 30 particles. 
The full curve shows the results for q = 1.0 and the 
broken curve for 9 = 1.05. 

Secondly, we have studied the validity of the variational method. In doing so, we have 
deformed the systems in two different ways, called the naive and symmetric deformation 
procedures. In figures 3 and 4 we show a comparison between the ground-state energies 
obtained exactly and variationally for a system with eight particles and different values of 
q. In figure 3, we utilized the naive deformation procedure and in figure 4 the symmetric 
one. We have done the same in figures 5 and 6 for a much larger system, where 50 particles 
have been considered. Analysing these four figures,. we observe that the variational method 
is indeed a good approximation even in the case of the pairing model, which is much more 
complex that the previously studied Lipkin model 131. The method improves when more 
particles are taken into account for a fixed deformation and also for lower deformations 
when the number of particles is fixed. It is worth mentioning that both deformation 
procedures, i.e. the naive and the symmetric, give the same qualitative behaviour. However, 
the symmetric deformation procedureseems to enhance the effects of the qdeformation. 

We have not plotted phase transition curves obtained from Hamiltonian (31) because it 
gives a behaviour analogous to the one shown in figures I and 2. 

Finally, we would like to point out that the variational method is also valid in complex 
systems even when quantum deformation (either naive or symmetric) is introduced. This 
fact helps in calculations where the exact result is not easily obtained. 

~ 
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e.,, 
Figure 3. The ground-state energies (Ea)  as a function 
of the interaction srrength G.8 for eight panicles. The 
full curves show the results obtained f" the exact 
diagonalization of (5)  for 9 = 1.0. 1.2 and 1.5 (lower 
curves represent smaller deformations). The bmken 
curves show the results obtained from the variational 
method also for 9 = 1.0. 1.2 and 1.5. 

. .  
-10.00 

0.00 ,LOO P.00 3.00 4 >  

Grt 

-"""t, ' , 

Figure 4. The same as in, figure 3, but using the 
symnkhic deformation procedure, ie. equation (31) 
plus the interaction terms of equation (5) is exactly 
diagonalized and also solved with the variational 
method. The full curves represent the exact results and 
the broken curves the variational ones. In this case, 
the lower curves are the ones containing the quantum 
deformation, 

.m.m 
0.00 5.w 2.m 3.03 rm 

G" 

Figure 5. The same as in figure 3, but for 50 panicles. 
The lower curves are plotted for 9 = 1.0 and the upper 
ones for 9 = 1.05. 

-m.oo -60.00c 0 00 .%m 

G.,, 

Figure 6. The same'as in figure 5, but curves are 
obtained f" the symmeuic deformation procedure. 
The lower awes are the ones obtained with the 
introduction of 9 = 1.05. 
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